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Abstract
We present dielectric and specific heat data on barium sodium niobate
(Ba2Na1−x Nb5O15) from 4 to 460 K with an emphasis on the low-temperature
incommensurate phase transitions. This material is ferroelectric below Tc(x) =
ca 830 K, and the reciprocal dielectric constant extrapolates to zero near this
temperature throughout the low-temperature phases, which involve distortions
within the non-polar plane and do not affect significantly the ferroelectric
properties. The transition from orthorhombic to incommensurate near 113 K
has highly frequency-dispersive dynamics, reminiscent of those in relaxors,
and an activation energy of 0.42 eV. The ‘lock-in’ transition near 30 K to
a tetragonal structure with an enlarged unit cell has been controversial, with
studies in Japan (1996, 1997) and the Czech Republic (2004) not finding the
P4nc phase predicted by Schneck (1982) and measured directly via spallation
neutron scattering by Scott et al (1990); our new studies show that this transition
is limited by kinetics and requires very slow cooling for detection.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Barium sodium niobate is a tungsten bronze structure that is ferroelectric with six phase
transitions at ambient pressure and three incommensurate phases. Unlike most incommensurate
insulators, it remains ferroelectric throughout its incommensurate phases, with polarization P
normal to the direction(s) of modulation. At least two of the incommensurate phases vanish
above a hydrostatic pressure of p = 5 kbar. A recent study [1] characterized the four
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phase transitions above ambient temperature with an emphasis on the critical exponents for
thermodynamic quantities near its ferroelectric phase transition temperature (of about 830 K),
which are those of a mean-field transition near a tricritical point. The transition is of special
theoretical interest because the order parameter is four-dimensional, which is unusual but not
unique (cf BaMnF4). A further complication of interest is the fact that Tc(x) varies significantly
with Na–vacancy concentration x in this material, from about 810–850 K. A second recent
review [2] focused attention on the low-temperature transitions, and in particular the presence
or absence of a low-temperature lock-in transition for the incommensurate phase below 100 K,
as well as on a previously unreported doubling of the primitive cell along the b-axis. Such
incommensurate phases are generally known to be stabilized by defects and vacancies, so the
absence of such a lock-in transition in some specimens [3, 4] would not be surprising. This
situation would actually be of considerable interest because, as shown recently by Cano and
Levanyuk [5], an incommensurate phase persisting to T = 0 should exhibit a specific heat
linear in T , unlike most insulators. The lock-in phase had been predicted by Schneck [6] to
have tetragonal P4nc space group symmetry with a unit cell enlarged from that of the ambient
orthorhombic phase, and this was confirmed by Scott et al [7] in one sample. However, the
incommensurate phase can be stabilized by defects, including Na–vacancies, so in the present
work we examine two specimens with Na–vacancy concentrations known to be very different
(about 0.5% and 3%). We note that transitions which increase in point group symmetry
with lowering temperature (in this case from orthorhombic to tetragonal) are uncommon but
thermodynamically and symmetry allowed, particularly if they increase the size of the primitive
unit cell.

2. The incommensurate transition near 100 K

2.1. Prior work

Following its original discovery by Schneck et al [8], the most recent studies of the low-
temperature phase transition near 100 K are by Mori et al [3] and Fujishiro and Uesu [4] and
are reviewed by Buixaderas et al [2]. Reference [3] shows a transmission electron microscopy
(TEM) study down to 25 K which finds that the quasi-commensurate Ccm21 phase becomes
a 2q quasi-tetragonal phase below a broad phase transition that actually begins around 200 K
and extends down to 100 K. Mori et al claim that their diffraction patterns show that the low-
temperature phase has a unit cell 4× that of the room-temperature phase, with 2a × 2b × c of
that orthorhombic phase, in agreement with earlier studies at 105 K by Verweft et al [9, 10],
who concluded that this material is tetragonal below 110 K, and with Schneck et al [11, 12],
who showed that this depends upon samples and their individual Na–vacancy concentration.
However, the diffraction patterns in the work of Mori et al also reveal extra diffraction maxima
located at (0 k/2 l/2) and diffuse maxima at (h/2 k l/2), which require a 2a × 2b × 2c unit
cell; hence this lattice periodicity is actually 8× that of the room-temperature phase.

Oliver and Scott [13] showed that the hysteresis behaviour in the dielectric constant
(cooling versus heating) was present from about 40 to 110 K, thus limiting the inferred
incommensurate 2q phase to that temperature range. (More recent evidence puts the upper
transition closer to 113 K and the lower transition closer to 30 K.) They also found at 10 K
that the spallation neutron scattering diffraction spots could be indexed to a P4nc tetragonal
lock-in phase. In general, the various results show that sample variability, and in particular
their Na–vacancy concentration, determines whether there is a lock-in transition or if the
incommensurate structure persists to extremely low temperatures, with antiphase boundaries
pinned and stabilized by vacancies.
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Figure 1. Temperature dependence of
the dielectric constant ε′ (a) and ε′′
(b) obtained in BNN along b- and c-
axes at a frequency of 1 kHz.

2.2. New dielectric studies

We have analysed two specimens of barium sodium niobate (Ba2NaNb5O15), abbreviated
as BNN, having different Na–vacancy concentrations (established from earlier work [1]).
Dielectric data were run for all axes of both samples, but no significant differences were
observed for the two samples in the present work. Although there is a small shift between
the absolute values of the dielectric constants, only near the ferroelectric transition at about
835 K (studied in [1]) are effects from the Na–vacancy concentration significant. The two
samples had different shapes, making electroding of the c-face easier (and the data better) for
one, and of the b-face for the other. The better quality data for each axis are shown in the
following figures.

The real (ε′) and the imaginary (ε′′) parts of the complex dielectric constant were measured
as a function of the temperature and frequency (1 mHz–1 MHz) using a Novocontrol Alpha
Analyzer. The temperature of the samples was stabilized by an Oxford instruments continuous-
flow cryostat and ITC4 temperature controller in the temperature range between 4.2 and 460 K.

Both specimens exhibit several anomalies in the real ε′ and imaginary ε′′ parts of
the complex dielectric constant in the studied temperature interval between 4.2 and 460 K
(figure 1). Figure 1(a) shows the temperature dependence of the real part of the dielectric
constant, measured at 1 kHz, along the b- and c-axes.

From figure 1(a) it is obvious that both temperature dependences are qualitatively different.
While the values of the dielectric constant measured along the b-axis decrease with increasing
temperature, the values measured along the c-axis increase. The increase in the dielectric
constant observed along the c-axis is related to the ferroelectric phase transition at high
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Figure 2. Temperature dependence of the inverse dielectric constant (1/ε′(T )), measured along
the c-axis in BNN at 1 kHz. Extrapolation over a very wide range of temperatures (>100 K) gives
Tc = 809 K (inset).

temperatures. In fact 1/ε′(T ), measured along the c-axis, follows the Curie–Weiss law
(figure 2), thus signalling the onset of the phase transition at high temperature. An extrapolation
over a very wide range of temperatures (>100 K) gives a transition temperature of 809 K, which
agree reasonably with the known Curie temperature T ≈ 840 K (see [1] and references therein).

Figure 1(b) shows the temperature dependence of the imaginary part of the dielectric
constant, measured at 1 kHz, along the b- and c-axes. In contrast to the behaviour observed in
the real part of the dielectric constant, figure 1(b) shows similar temperature dependences of ε′′
in the whole temperature range studied for both the b and c directions, except for the slightly
higher ε′′ values, measured along the c-axis.

If we look at two temperature dependences of the imaginary dielectric constant, three
distinctive anomalies can easily be identified (denoted by arrows in figure 1(b)). After the
analysis of the frequency scans at different temperatures, we conclude that the observed
maxima in ε′′ (denoted in figure 1(b) by R1, R2, and R3) are not static phenomena, but
are of purely dynamic origin being related to the existence of the three distinctive dielectric
relaxations. Same denotations of dielectric relaxations are valid for both axes, since the same
dynamic response is expected in both axes. Due to different Na–vacancy concentrations of the
samples, the characteristic relaxation frequencies of one axis were found to be slightly shifted
against those determined in the other axis.

The complex dielectric constant data for the c-axis are shown in figure 3 in an Argand plot,
where ε′′ is plotted versus ε′ at three different temperatures. At higher temperatures (305 K)
only one semicircle with a centre below the ε′ axis is seen in the frequency window of our
experiment. We denote this relaxation by R1. By lowering the temperature to 205 K, a second
relaxation appears in our frequency window, in addition to the first one. We denoted it by R2.
This relaxation exhibits much higher characteristic frequency and dielectric relaxation strength
than R1. By lowering the temperature the characteristic frequencies of relaxation, R1 and
R2, decrease significantly, consequently the relaxation R1 escapes the experimental frequency
window below approximately 150 K.
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Figure 3. ε′′ plotted versus ε′
at three different temperatures in
the BNN c-axis sample. Solid
lines are fits with the Cole–Cole
expression (equation (1)). Labels R1
and R2 denote the first and second
relaxations.

Experimental data of both relaxations are fitted with the Cole–Cole expression

ε∗ = ε∞2 + �ε2

1 + (iωτ2)1−h2
+ �ε1

1 + (iωτ1)1−h1
, (1)

where subscripts 1 and 2 denote the first (R1) or the second (R2) relaxations, respectively.
Here the dielectric relaxation strength �εi = ε0i − ε∞i , the characteristic relaxation time

τi , and the parameter describing the distribution of the relaxation times hi play a role of fitting
parameters. If h = 0, the relaxation is monodispersive, while for 0 < h < 1 the relaxation
is polydispersive; i.e. there is a distribution of relaxation times in the system. ε0i is the static
dielectric constant, and ε∞i is the dielectric constant at high frequencies.

Figure 4 shows the temperature dependence of the characteristic relaxation frequency
f1 = 1/(2πτ1) of the first relaxation (R1) obtained by fitting data, at each temperature, with
equation (1). The temperature dependence of the relaxation frequency f1 follows the Arrhenius
law f1 = f01 exp(−�U1/T ). Values of the fit parameters obtained by fitting the data in figure 4
(solid lines in figure 4) are f01 = 1.3×1011 Hz and �U1 = 0.42 eV. There are several possible
sources of this energy, but kink diffusion is most likely. From nuclear magnetic resonance
(NMR), Munteau and Ailion found 0.47±0.05 eV in Ba2NaNb5O15 (the present material), and
they interpreted that as an activation energy for the slow diffusion of incommensurate kinks,
which they found to persist from 15 to 540 K [14].

Figure 4 also shows the temperature dependence of f1 determined for the b-axis. As
mentioned before, the characteristic frequencies are slightly shifted in temperature due to
different Na–vacancy concentrations of the samples.
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Figure 4. Temperature dependence of the characteristic relaxation frequency f1 obtained in the
b- and c-axes of BNN. Solid lines are fits to the Arrhenius law.

Figure 5 shows the temperature dependence of the static dielectric constant, ε01, and
the dielectric constant at high frequencies, ε∞1, of the R1 relaxation measured along the c-
axis. Both parameters were determined by fitting the dielectric data at each temperature with
equation (1). Below 150 K the characteristic frequency f1 decreases so much that most of the
R1 relaxation leaves the experimental frequency window, which precludes the determination
of ε01 at lower temperatures. Both values ε01 and ε∞1 at higher temperatures decrease with
decreasing temperature. At lower temperatures (T < 200 K), ε∞1 saturates to an approximately
constant value of about 85, but the ε01 starts to increase again below 230 K.

Figure 6 shows the temperature dependence of the dielectric strength �ε1 = ε01 − ε∞1 of
the R1 relaxation, measured along the c-axis. The dielectric strength increases with decreasing
temperature and reaches a value of about 20 at 150 K. Since the dielectric strength of the R1
relaxation decreases with increasing temperature, which means that this relaxation cannot be
interpreted as a soft mode related to the ferroelectric transition at Tc ≈ 840 K.

The polydispersivity of the R1 relaxation does not change in the studied temperature
region, with h1 being approximately 0.6. In contrast to this, the second relaxation becomes
more polydispersive by lowering the temperature. The h2 increases from 0.2 at high
temperatures to 0.8 at 150 K. It is necessary to mention that ε∞2, the dielectric constant at high
frequencies of the second relaxation R2, which enters the frequency window of the experiment
below 210 K, could not be determined directly from the experiment due to the very high
relaxation frequency of this relaxation. Therefore the best-fit value of ε∞2 = 30 was fixed at all
temperatures. The dielectric strength of the second relaxation was determined by �ε2 = ε01–
30. Namely, the static dielectric constant of the second relaxation is ε02 = ε∞1. Since ε02

increases with increasing temperature, this relaxation can be identified as a main contribution
to the total dielectric constant increase with increasing temperature toward Tc ≈ 840 K (see
figures 1(a) and 2), possibly linking this relaxation to the ferroelectric soft mode.
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Figure 5. Temperature dependence of the static dielectric constant, ε01, and the dielectric constant
at high frequencies, ε∞1, of the R1 relaxation measured along the c-axis of BNN. Both values
were determined by fitting the frequency-dependent dielectric data at a given temperature with
equation (1).

Figure 6. Temperature dependence of the dielectric strength �ε1 = ε01 − ε∞1 of R1 relaxation,
measured along the c-axis of BNN.

As indicated by figure 3, the second relaxation R2 becomes progressively suppressed with
decreasing temperature, i.e. the system becomes more polydispersive at lower temperatures.
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Figure 7. Temperature–frequency plot for several values of reduced dielectric constant δ (top to
bottom: 0.80, 0.85, 0.90, 0.93, 0.95, 0.97, 0.98, and 0.99) in BNN along the c-axis. Solid lines
are fits obtained with a generic Vogel–Fulcher expression. The inset shows the dependence of the
Vogel–Fulcher temperature T0 on δ.

In order to extract information on the temperature variation of the relaxation spectrum of the
second relaxation and thus on the dynamic process, we analysed the R2 dielectric dispersion
in BNN using the temperature–frequency plot applied recently to various glassy and relaxor
systems [16–18]. An extensive description of this method was already given elsewhere [15, 17].
Here an assumption is adopted that the distribution of relaxation times, g(z), is limited by the
lower and upper cutoffs z1 and z2, respectively, where zi = ln(ωaτi) with ωa as an arbitrary
unit frequency. By varying the reduced dielectric constant δ

δ = ε′(ω, τ ) − ε∞
ε0 − ε∞

=
∫ z2

z1

g(z) dz

1 + (ω/ωa)2 exp(2z)
, (2)

between the values 1 and 0, the filter in the second part of equation (2) probes the distribution
of relaxation times g(z) by shifting its position in ω space [16] (at δ = 1 the upper limit of the
relaxation spectrum is probed, i.e. the longest relaxation time).

Characteristic temperature–frequency plots for each fixed value of the reduced dielectric
constant δ between 0.80 and 0.99 are shown in figure 7. It is clearly seen that different parts
of the relaxation spectrum diverge at different freezing temperatures. All the data for δ > 0.8
above 150 K can be effectively described by a Vogel–Fulcher law ( f2 = f02 exp[−�U2/(T −
T0)]). The parameters f02, �U2, and T0 were determined by fitting each curve in figure 7
with the Vogel–Fulcher expression. The inset shows the dependence of the Vogel–Fulcher
temperature T0 on δ. The freezing temperature, where the longest relaxation diverges, was
determined as T f = T0(δ → 1) = 95.7 ± 0.3 K. Similar behaviour due to the freezing of the
domain wall motions was found in KD2AsO4 and KH2AsO4 [19–21].
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Figure 8. Temperature dependence of the relaxation frequency f3 of the R3 relaxation, measured
along the b- and c-axes of BNN.

Below 70 K the third relaxation (R3) enters the frequency window of the experiment.
This relaxation exhibits relatively small dielectric strength (�ε3 = ε03 − ε∞3 ≈ 0.5), but
still it was possible to determine the temperature dependence of the characteristic frequency.
Figure 8 shows the temperature dependence of the relaxation frequency of the R3 relaxation
f3, measured in both axes. The temperature dependence of the relaxation frequency f3 follows
the Arrhenius law f3 = f03 exp(−�U3/T ) in the temperature interval between 40 and 70 K.
Parameters of the fit are f03 = 1.3 × 1013 Hz and �U3 = 0.10 eV. The physical origin of
this third relaxation is unknown, but [22] shows that a value of about 0.1 eV is characteristic of
many tetragonal tungsten bronze relaxors at cryogenic temperatures.

It is rather remarkable in that there are three intervening phase transitions; however, this
occurs because the ferroelectric polarization Pz is orthogonal to the planar distortions in the
xy-plane at those transition temperatures.

3. The lock-in transition near 30 K

3.1. Prior controversy

Earlier work, as described in section 2 above, suggests that the existence of a lock-in phase
transition to a commensurate structure at T � 110 K may be sample dependent. In addition,
there is a good possibility that the phase transition near 40 K—evident in both dielectric [13]
and neutron scattering studies [7]—is primarily a distortion of oxygen ion positions. The neu-
tron scattering data have the advantage that they are very sensitive to the position of the oxygen
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Figure 9. Specific heat divided by absolute temperature C(T )/T for barium sodium niobate from
15–300 K. The fit assumes eight Einstein modes for phonons, shown as a bar graph in the insert.

ions, whereas x-ray or electron microscopy generally gives accurate information for only the
heavy Ba or Nb ions in this material. Thus it is not surprising that x-ray and SEM/TEM reveal
no phase transition near 40 K, whereas neutron scattering does, since most phase transitions in
tungsten bronze oxides involve oxygen displacements rather than heavy-ion movement.

3.2. Low temperature specific heat data

The specific heat was measured with a continuous heating adiabatic calorimeter on a 80 mg
sample (the sample with the lower Na vacancy concentration) between 15 and 300 K and on
a smaller ∼20 mg sample (the sample with the higher Na vacancy concentration) with a high-
resolution ac heat-flow calorimeter between 10 and 60 K. Figure 9 shows the total specific
heat in the full temperature range. The inset of this figure illustrates a bar graph of phonon
features, fitted as eight Einstein modes. The lower-energy peaks correspond reasonably well
with the known long-wavelength phonon branches [23] near 30, 45, and 80 cm−1. On this
scale, no anomalies are observed at either about 100 K or 40 K, demonstrating how subtle these
transitions are.

Figure 10 shows an expansion at low temperatures with two different specific heat runs
(taken upon heating the sample with a rate of 1 K min−1) using the high-resolution heat
flow technique. In one of the curves a jump appears at 28 K, indicating the presence of a
second-order phase transition, which we ascribe to the lock-in transition of the incommensurate
phase (expected near 40 K). We find that the occurrence of this transition depends strongly on
the cooling history: in the first experiment the sample was cooled down slowly from room
temperature over ∼4 h. The anomaly is present. We measured upon heating the sample over
the transition up to ∼50 K, then cooled the sample down quickly (within 5 min) and repeated the
experiment. The specific heat showed the same feature at 28 K. This time we heated the sample
up to 150 K (over the temperature where we expected the transition to an incommensurate phase

10
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Figure 10. High-resolution specific heat data showing two runs with different cooling history:
before run 1 the sample was slowly cooled down from room temperature over 4 h; before run 2
the sample was quenched down from 150 K within 10 min. The arrow marks a second-order phase
transition in run 1. The inset of the figure shows the difference between run 1 and run 3.

at ∼110 K). Afterwards the sample was cooled down again more rapidly (within about 10 min)
and a third run was performed. Surprisingly, the transition at 28 K is absent. The two curves
included in figure 10 show the first run (after slow cooling from room temperature) and the
third run after quenching the sample from 150 K. As the incommensurate transition is expected
at ∼110 K, it seems that the occurrence of the 28 K transition depends on how fast the sample
was cooled over the 110 K transition.

A more detailed examination of the phase transitions can be made by using the fit obtained
from the set of eight Einstein modes to subtract the phonon background. Figure 11(a) shows
the temperature range around 110 K and figure 11(b) shows the 28 K transition in detail. A
broad anomaly in good accordance with the dielectric data is visible around 110 K, which we
ascribe to the development of an incommensurate structure. The absence of a sharp feature
suggests that the transition is more of a crossover and might be of glassy nature, which is
reflected in its highly frequency dispersive dynamics. As the occurrence of the 28 K transition
depends strongly on the cooling history, it seems that the system needs time to approach the
incommensurate ground state. If the sample is quenched, the commensurate order persists
down to low temperatures and the incommensurate lock-in transition is excluded.

If we look at the shape of the transition at 28 K, it appears rather like a slightly broadened
mean field transition. However a slight upturn below the transition temperature might be
attibuted to a critical behaviour, which is basically hidden by the broadening of the transition.
We show, as a tentative comparison, a fit according to a power law of the form C − Cphonon =
A±/α|1 − T/Tc|−α + C±, with the critical exponent α = −0.166, which corresponds to a 3D
system with four components of the order parameter [24, 25] (as proposed by intrinsic theories);
the critical amplitudes are A+ = A− = 5.2 mJ/gat K for T > Tc and T < Tc, respectively, and
C± is a constant. We do not attempt to perform a detailed analysis of the critical behaviour here,
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Figure 11. Specific heat after subtraction of the phonon background: (a) broad anomaly
around 110 K, which we ascribe to the development of an incommensurate phase (adiabatic
experiment); (b) second-order transition at 28 K, which might be the lock-in phase transition of
the incommensurate phase (run1 heat-flow experiment). A fit according to a power law of the form
C − Cphonon = A±/α|1 − T/Tc|−α + C± with the critical exponent α = −0.166 has been added.
Inset: entropy difference at the transition at 28 K, as obtained by integrating the specific heat data.

as the transition is too broad and we are not sure if the system is really in thermal equilibrium.
Nevertheless, the fit with an exponent close to zero (logarithmic divergence) shows that large
exponents such as α = 3/2, which are expected from defect theory [26, 27], can be excluded
as the divergence would be too strong. Both the incommensurate–commensurate transition
at 103 K and that at about 582 K are expected to involve four-dimensional order parameters.
The critical exponents for such systems are theoretically unusual, with polarization exponent
β = 0.39, susceptibility exponent γ = γ ′ = 1.385, and specific heat exponent α = −0.166.
Note the very unusual sign of α; a negative exponent means that the divergence is slower than
logarithmic (log is equivalent to an exponent of zero).

12
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Figure 12. Dielectric loss tangent (10 kHz) measured upon slow dip cooling into liquid helium
and subsequent re-heating. The inset shows the difference between the cooling and heating data
between 60 and 130 K.

We note that, although the data are compatible with the theoretically predicted value of
α = −0.166 for four-dimensional order parameters, the uncertainty in this fitted value is
large enough to include zero (in this case a logarithmic divergence is expected, which we
found to be a less good fit than α = −0.166), and a logarithmic divergence is compatible
with mean field. Thus in the absence of an accurate value of gamma (precluded by the broad
peak in susceptibility near 28 K), the present data do not in themselves provide evidence of
4D dynamics. The sluggish kinetics make us uncertain that the system is in true thermal
equilibrium, which is an issue that has also been shown by Yakushkin [28] to arise in the
specific heat data of the relaxor strontium barium niobate (SBN).

The inset in figure 11(b) shows the entropy difference at the transition at 28 K, as obtained
from integrating the specific heat data. A total entropy change of 2.7 mJ/gat K is found. This
rather small value is of interest in terms of the general discussion of lock-in transitions from
incommensurate phases, which some authors have suggested are always first order.

3.3. Dielectric loss near 30 K

Following the realization that a slow cooling rate was an extremely important prerequisite for
the observation of the transition near 30 K, we measured the dielectric response along the b-
axis under slow dip cooling in liquid helium. In contrast to figure 1, we plot data here in terms
of the dielectric loss tangent (ε′′/ε′) to highlight two additional features of note (figure 12). A
small feature is visible in the 20–30 K region, exactly where the anomaly in the specific heat
was found (upon re-examination, the data in figure 1 also show this anomaly when plotted as
dielectric loss). Additionally, a small hysteresis upon cooling and heating is observed in the
region 110–125 K.

3.4. Entropy stabilization of incommensurate insulators

It is important to emphasize a qualitative difference between incommensurate structures in
metals (or magnets) and in ferroelectric insulators: in metals or magnets the incommensurate
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phase can be the T = 0 thermodynamic ground state. One calculates the internal energy U
from the band structure and the Fermi level and finds, generically, that U can be minimal for a
modulated incommensurate structure. In this sense, most incommensurate metals are more or
less alike. However, incommensurate insulators are each different and idiosyncratic (although
the axial next-nearest neighbour Ising model (ANNNI) gives a good overall description of
many, especially the potassium selenate K2SeO4 family) and, most importantly, they are
entropy stabilized: G = U − T S. Thus there are few, if any, insulators that are intrinsically
incommensurate at T = 0 (a few may be defect-stabilized with defects pinning anti-phase
boundaries). Therefore it should not be a surprise that the model of Cano and Levanyuk [5]
does not apply to Ba2NaNb5O15.

4. Conclusions

The present study serves as an update on the fine review of incommensurate phases in this
material given by Schneck, Toledano and Errandonea [15] and studied 30 years ago throughout
the 1970s and 1980s in a long series of papers by these well-known physicists. (It is interesting
to note that Schneck is now a prominent concert pianist and Toledano is an opera singer.)
Together with work recently reported [1] on the four phase transitions at high temperatures,
there is now a relatively complete picture of seven phases and six transitions in this tungsten
bronze.
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[16] Kutnjak Z, Filipič C, Levstik A and Pirc R 1993 Phys. Rev. Lett. 70 4015
[17] Kutnjak Z, Pirc R, Levstik A, Levstik I, Filipič C, Blinc R and Kind R 1994 Phys. Rev. B 50 12421
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